skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long-range intercellular communication is essential for multicellular biological systems to regulate multiscale cell–cell interactions and maintain life. Growing evidence suggests that intercellular calcium waves (ICWs) act as a class of long-range signals that influence a broad spectrum of cellular functions and behaviors. Importantly, mechanical signals, ranging from single-molecule-scale to tissue-scale in vivo, can initiate and modulate ICWs in addition to relatively well-appreciated biochemical and bioelectrical signals. Despite these recent conceptual and experimental advances, the full nature of underpinning mechanotransduction mechanisms by which cells convert mechanical signals into ICW dynamics remains poorly understood. This review provides a systematic analysis of quantitative ICW dynamics around three main stages: initiation, propagation, and regeneration/relay. We highlight the landscape of upstream molecules and organelles that sense and respond to mechanical stimuli, including mechanosensitive membrane proteins and cytoskeletal machinery. We clarify the roles of downstream molecular networks that mediate signal release, spread, and amplification, including adenosine triphosphate (ATP) release, purinergic receptor activation, and gap junction (GJ) communication. Furthermore, we discuss the broad pathophysiological implications of ICWs, covering pathophysiological processes such as cancer metastasis, tissue repair, and developmental patterning. Finally, we summarize recent advances in optical imaging and artificial intelligence (AI)/machine learning (ML) technologies that reveal the precise spatial-temporal-functional dynamics of ICWs and ATP waves. By synthesizing these insights, we offer a comprehensive framework of ICW mechanobiology and propose new directions for mechano-therapeutic strategies in disease diagnosis, cancer immunotherapies, and drug discovery. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. null (Ed.)
  3. Abstract In vitro gliding assay, microtubule translocation by kinesin motor proteins on a surface, has been used as an engineering tool in analyte detection, molecular cargo transport, and other applications. Although controlling the moving direction is often necessary to realize these applications, current direction control methods focus largely on lithographic microfabrication of tracks or external fields on the microtubules. These methods are effective, but are relatively complicated. In addition, they cannot target particular microtubules without affecting others. In this study, we propose a facile approach that can make local direction changes for selected microtubules using a polystyrene particle as a circular motion center and a DNA double helix with streptavidin as a capture arm. The DNA arm captures a microtubule in the close proximity of the immobilized particle via biotin–streptavidin interaction and changes the moving direction ~10° on average. In contrast, no significant direction changes are observed other than random variations with streptavidin‐less DNA arms (normal distribution centered at 0°), similar to regular motility assay. The particle‐assisted local direction change scheme is compared with a flow field‐based ensemble method. The combination of flow and kinesin interactions with each microtubule exerts a force to change the direction, ultimately aligning it to the flow field, regardless of its initial direction. A simple model based on the force balance predicts the time needed for such an alignment. Overall, the particle‐based local scheme is distinct and different from ensemble methods such as crossflow that changes directions of all microtubules in the field, thus offering unique utility in engineering applications. 
    more » « less